YU 02

Computational Methods for Air Traffic

Congestion Delay Optimization
Final Report

Gregory D. Glockner and George L. Nemhauser
Logistics Engineering Center
School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332

May 20, 1997

[4] G. D. Glockner and G. L. Nemhauser. Dynamic Network Flow with Uncertain Arc Capacities:
Formulation and Problem Structure. Technical Report 96-08, Logistics Engineering Center,
Georgia Institute of Technology, Atlanta GA, 1996. '

(5] G.D. Glockner, G. L. Nemhauser, and C. A. Tovey. Dynamic Network Flow with Uncertain Arc
Capadcities: Algorithmé and Computational Results. Technical report, Logistics Engineering

Center, Georgia Institute of Technology, Atlanta GA, 1997.

(6] M. Held, P. Wolfe, and H. P. Crowder. Validation of Subgradient Optimization. Mathematical
Programming 6, 62-88, 1974.

[7] C. Lemaréchal. Nondifferntiable Optimization. In G. L. Nemhauser, A. H. G. Rinnooy Kan,
and M. J. Todd, eds., Optimization, volume 1 of Handbooks in Operations Research and Man-
agement Science, pp. 529-572. North-Holland, New York, 1989.

(8] M. Minoux. Mathematical Programming: Theory and Algorithms. John Wiley and Sons, New
York, 1986. '

[9] J. B. Rosen. The Gradient Projection Method for Nonlinear Programming, Part 1: Linear
Constraints. Journal of the Society for Industrial and Applied Mathematics 8, 181-217, 1960.

(10] S. W. Wallace and T. Helgason. Structural Properties of the Progressive Hedging Algorithm.
Annals of Operations Research 31, 445-456, 1991. '

[11] R. J.-B. Wets. The Aggregation Principle in Scenario Analysis and Stochastic Programming.
In S. W. Wallace, ed., Algorithms and Model Formulations in Mathematical Programming, pp;
91-113. Springer-Verlag, New York, 1989.

{12] R. J.-B. Wets. Stochastic Programming. In G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J.
Todd, eds., Optimization, volume 1 of Handbooks in Operations Research and Management
Science, pp. 573-629. North-Holland, New York, 1989.. '

&

Time Memory

Problem | CPLEX COMET Ratio | CPLEX COMET Ratio
atl6 0:04:28 0:00:37 7.2 | 225 MB 1MB 225.0
den3 0:03:29 0:00:21 10.0 | 210 MB 1MB 210.0
mcob 0:03:35 0:00:26 8.3 | 240 MB 1MB 240.0
sea4 0:03:14 0:00:37 5.2 '| 200 MB 1MB 200.0
(20,50) | 0:07:51 0:00:36 13.1 | 155 MB 3 MB 51.6
(20,65) | 0:12:49 0:00:45 17.1 | 125 MB 3 MB 41.6
(30,30) | 0:13:24 0:01:08 11.8 | 235 MB 3 MB 78.3
total 0:48:50 0:04:30 10.9 | 1390 MB 13 MB 106.9

Table 2: CPU Times and Memory Requirements

LP COMET
Problem | optimum | Primal Diff % Diff | Dual Diff % Diff
atl6 29674.3 | 29865.6 191.3 . 0.64% | 29534.0 140.3 0.47%
den3 5901.5 | 5901.5 0.0 0.00% | 5899.0 25 0.04%
mcob 1284.8 | 1284.8 0.0 0.00% | 1284.7 0.0 0.00%
sead 47033.4 | 49642.7 2609.3 5.55% | 46229.9 803.5 1.71%

(20,50) 433.7 461.5 27.8 6.40% | 423.7 10.0 2.32%
(20,65) 432.8 462.1 29.4 6.79% | 424.6 8.1 1.88%
(30,30) 1168.2 | 1197.3 29.1 2.49% | 1145.0 232 1.99%
average 3.12% 1.20%

Table 3: Solution Accuracy for COMET

3.5 Publications from This Research

The work under this grant appeared as a technical report [5]. Gregory Glockner’s doctoral thesis

[3] contains all details for the entire project, including results from prior FAA grants.

References

[1] CPLEX Optimization, Inc., Incline Village NV. CPLEX, 4.0 edition, 1995.

[2] G. D. Glockner. Effects of Air Traffic Congestion Delays Under Several Flow Management
Policies. Transportation Research Record 1517, 29-36, 1996.

[3] G. D. Glockner. Dynamic Network Flow with Uncertain Arc Capacities. PhD thesis, Georgia
Institute of Technology, Atlanta GA, 1997. ‘

use when compared with a commercial LP solver. More importantly, COMET finds good solutions

to problems that are too large to be solved by commercial LP software.

- Seven flow management test problems are described in Table 1. Complete results may be found

in [5]. In the table, Scen represents the number of scenarios, Comm represents the number of

Problem | Nodes Arcs Scen Comm | Row Col Non-0
atlé 565 1078 6 76 353002 491568 1189400
den3 878 1640 3 110 | 356987 541200 251790
mcob 707 1304 6 66 352788 516384 1196448
sea4 859 1605 4 73 291600 468660 1031928

(20,50) 80 139 50 45 255000 312750 807750
(20,65) 80 139 65 45 334335 406575 1055745
(30,30) 130 229 30 75 355800 515250 1211850

Table 1: Test Problems

commodities, and Nodes and Arcs represent the number of nodes and arcs in the graph G. Row,

Col, and Non-0 specify the rows, columns, and nonzeros in the LP matrix.

Each problem was tested with CPLEX’s dual simplex method [1} and COMET: Table 2 sum-
marizes both the CPU times and the memory use. The programs were tested on an RS/6000 model
590. Table 2 contains a lower bound for CPLEX’s memory use and an upper bound for COMET’s
memory use. COMET saves about an order of magnitude in CPU time and about two orders of
magnitude in memory use. The lower memory requirements result in a better “wall-clock” time for
'COMET since the operating system does less paging of virtual memory. They also suggest that
only COMET can solve these problems within the standard memory configurations of a desktop
PC.

The solution accuracy for COMET is found in Table 3. COMET’s primal solutions are generated
by the primal heuristic, which causes the primal gap. Since the dual optimization is an iterative
procedure, we could improve the dual solutions by increasing the number of iterations. However,
this demonstrates that compath decomposition finds nearly optimal primal and dual solutions using

far less memory and time than CPLEX takes to find an optimal LP solution.

primal heuristic greedily constructs a solution by augmenting the existing flow as much as possible
along the cheapest feasible compath. There can be at most O(K|A| + 1) augmentations to this
heuristic. Since we can find a cheapest compath in time O(K|.A|), it follows that the heuristic takes
O(K?|A]?) time.

The Lagrangian function (2) is piecewise linear and concave. Thus, we use nonsmooth optimiza-
tion techniques to optimize the Lagrangian dual (3). Several nonsmooth optimization algorithms
are described in [7]. In this project, we developed a new direction that approximates the direc-

tion generated by bundle methods. Given a set G = {g%,...,g"*} C 04(r) of supergradients, we

> a/llgl?

_ 9€G

=SS Ui 2

geG

construct the search direction

The direction (5) is successful with the compath master problem, though we have not tested its

effectiveness with arbitrary nonsmooth optimization problems.

Given a search direction, we must also generate an appropriate step size @ and ensure that
the new iterate 7’ = 7 + ad is feasible. We use the rule developed in [6] and described in [7, 8].
Specifically, let

L)+ Z
a—p N (6)

where 8 € (0,2) is a constant and Z is the unknown optimum value. To ensure that n’ is feasible,
we must require that 7’ < 0. We use a projection method based on Rosen’s gradient projection
method [9]. We obtain a feasible dual solution 7’ by projecting the direction and the iterate. The

combination of these two projections reduces the bad effects of being near the boundary of 7 < 0.

3.4 Computational Testing

A real-world flow management problem can be very large. To be practical, we need to be able to
solve an instance of this problem quickly. In this part of the project, we test the running time of

our algorithms against general-purpose optimization software.

In [5], we describe an implementation of compath decomposition called COMET and present
computational results for multicommodity and single commodity problems. COMET generates a
nearly optimal solution to the Lagrangian dual resulting from compath decomposition. A heuristic
generates primal solutions, and marginal values from the heuristic are used to obtain an initial dual

solution. In solving the linear program (1), COMET significantly reduces CPU time and memory

(YN

Our algorithm for finding a cheapest compath is based on dynamic programming. First, we
define a partition of the scenarios similar to the approach in [11]. For each time ¢, let Q; be the
coarsest partition' of the scenarios { such that if B € Q; and &,k € B, then t < r(k, k’). In other
words, each B is a maximal subset of {2 such that all scenarios in B are indistinguishable at time ¢.

The sets B € §2; are known as scenario bundles [12] and can be represented as nodes in a scenario

tree. Likewise, each scenario bundle B € {); can be partitioned at time ' > ¢. The collection of

scenario bundles that result from partitioning B at time ¢’ are denoted by By.

Define f(%, B) to be the cost of a cheapest compath from node 2 to the sink n over the scenario
bundle B € Q;). If no path exists from i to the sink n, then we say that f(¢, B) = co for all
B € Q;). Since the scenarios in B are indistinguishable at time (), we must select a single arc
(%,7) from node ¢. This gives the recursion

f(i, B) = min {Z prai -+) f0, B’)} (4)

7 \keB B'€Beyj)
with boundary conditions f(n, B) = 0 for all B € {;(,). Thus, the cost of a cheapest compath from
1 to n over the scenarios Q is f(1,Q) = z.. For each pair (¢, B), the cheapest compath recursion

finds an optimum arc (%, 7) to traverse.

By ordering all nodes such that #(j) > t(¢) for all j > ¢, we can solve the recursion sequentially
from n down to the source, i = 1. This recursion only needs to scan each arc ¢ = (%,7) when
its starting node ¢ is reached. Thﬁs, each arc is scanned exactly once for each scenario bundle
B € Q;). Hence, this algorithm finds the cheapest compath in time O(K}.A|). The running time
of this algorithm is polynomial in terms of the length of the input data, which consists of the graph
G = (N, A) and the capacity scenarios {u!,%?,...,uX}. In [4], we argue that this is the fastest
possible algorithm for finding a cheapest compath.

3.3 Master Problem Algorithm

The master problem algorithm uses a primal heuristic and Lagrangian optimization to generate a
nearly optimal primal integral solution and an optimum dual solution. Marginal values from the
primal heuristic give an initial dual solution. Then, the primal and dual solutions are updated
alternately. Better dual solutions improve the cost vector used to generate a primal solution, and

better primal bounds improve the step size used by the dual optimization.

From the compath decomposition theorem, any solution to (1) can be decomposed by com-

paths. Reversing this process, we can build a solution by assigning flows along compaths. The

4

In (1), (1.1) are the flow balance constraints, (1.2) are the capacity constraints, (1.3) are the
nonanticipativity constraints, and (1.4) are the nonnegativity constraints. The nonanticipativity
constraints ensure that a decision cannot anticipate which scenario may occur when some scenarios
are indistinguishable. Specifically, if t(a) < 7(k, k') for some arc a, then scenarios k£ and k¥’ are
identical up to time #(a), and so the flow on @ under scenarios k£ and k' must be identical. The
size of (1) can be reduced by eliminating redundant capacity constraints (1.2). Also, the number of
nonanticipativity constraints can be reduced from O(K?|A|) to O(K|.A|) by sorting the scenarios
according to [10].

Our decomposition scheme places the capacity constraints (1.2) in the master problem and all

other constraints in the subproblem. This gives the Lagrangian function

L(r) = Zn’kuk + min Z(pkc-wk)a:k
k k

NzF = b Vi 2)
zk ¥ = 0 Vae AV K :t(a) < 7(k, k)
zc > 0 Vk
and Lagrangian dual
= Isgch(wl,...,wK). 3)

To evaluate the Lagrangian function, we must solve an optimization subproblem. The solutions
to this optimization subproblem are very special. To motivate the concept, consider a single scenario
acyclic network flow problem with a single source and a single sink. If we relax the arc capacities,
the optimum solution allocates all flow to the cheapest source-sink path. We generalized this result
to the multiple scenario dynamic network flow problem. We say that the source-sink paths ¢, ¢’
are compatible for scenarios k, k¥’ if the paths are identical up to time 7(k, &’). Thus, a set of paths
{q%,...,qX} is a compath if each pair ¢*1,¢*? is compatible for the corresponding scenarios ki, ks.

We proved in [4] that the solutions to the subproblems in (2) are flows that correspond to compaths.

3.2 Subproblem Algorithm

By itself, this compath theorem is not helpful in solving traffic flow management problems. We
also developed an algorithm for finding a cheapest compath. Thus, we can solve the subproblem
in the Lagrangian function (2) by finding a cheapest compath with respect to the costs (plc —
71,...,p%¢c — 7*) and placing all source-sink flow along the arcs in the compath. In traffic flow
management, we may think of a compath as a particular flight plan that is contingent on uncertain

weather.

2 Work Summary

The model development and testing was completed under prior FAA support. We describe these
results in [2]. In this project, we apply linear programming decomposition schemes for the dynamic
network flow model. The research for this project may be divided into four sections: decomposition
structure, subproblem algorithm, master problem algoﬁthm, and computational testing. Decom-
position structure covers the special structure in the dynamic network flow problem. We then give
an algorithm for solving the subproblems that result from compath decomposition. To obtain a
complete solution, we use a master problem algorithm. Finally, we test the effectiveness of our

decomposition scheme versus general-purpose optimization software.

In this project, we completed the research for these four sections.

3 Summary of Results

The model is described in [2]. For a complete description of the decomposition structure and

subproblem algorithms, see [4]. We summarize these results here.

3.1 Formulation and Decomposition Structure

We represent a flow management model with a time-space network. Let G = (W, A) be the directed
graph where each node ¢ € V represents a location at a particular point in time #(i). The time t(a)
of an arc a = (%,7) equals #(¢), the time of the initial node ¢. The flow represents the flights, and
the arc capacities represent the capacity restrictions on runways or airspace. We define a scenario
as one set of arc capacities, and we let £ € @ = {1,..., K} be the indices of the scenarios. Let
p* be the probability weight for scenario k, and let N be the network flow matrix. Let u* be the
vector of capacities for scenario k, and let z* be the vector of flows for scenario k. Let T(k, k')

be the latest time that scenarios k and &’ are identical. We formulate the dynamic network flow

problem as
z* = min Zpk(cxk)
k
NzF = b vk (1.1)
2k < Wb Vk (1.2) 1
k-2 = 0 VaeA;VE, K :t(a) < T(k,E) (1.3)
¢ > 0 Vk. (1.4)

.

1 Project Summary

Under a prior FAA grant, we developed a dynamic network flow model for central flow (ATCSCC).
This is a robust model that uses uncertain future capacity scenarios to generate optimal flow
management solutions. We used a simulation to compare the performance of this model versus
other central flow models. This simulation showed that our dynamic network flow model has

potential to reduce expected delay costs by several percent.

Because the model incorporates multiple capacity scenarios, a real-world problem can be very
large. The purpose of this project is to develop fast algorithms for generating a flow management
solution from the dynamic network flow model. We use a software prototype to test the effectiveness

of these algorithms.

